Low-density lipoprotein transport within a multi-layered arterial wall--effect of the atherosclerotic plaque/stenosis.

نویسندگان

  • Stephen Chung
  • Kambiz Vafai
چکیده

Low-density lipoprotein (LDL) transport while incorporating the thickening of the arterial wall and cholesterol lipid accumulation is analyzed. A multi-layered model is adopted to represent the heterogeneity using the Darcy-Brinkman and Staverman filtration equations to describe transport within the porous layers of the wall. The fiber matrix model is utilized to represent the cholesterol lipid accumulation and the resulting variable properties. The impact of atherosclerotic wall thickening is shown to be negligible in the axial direction, but is found to be considerable in the radial direction within intima. The reference values of intima's porosity and effective fiber radius are obtained through the fiber matrix model, which characterizes the microstructure within the intima. Transport through dysfunctional endothelium and fibrous cap, and the impact on hydraulic and molecular transport properties by LDL accumulation in a thickened arterial wall is analyzed. The effect of variable properties on plasma and LDL molecular transport is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of hypertension on low-density lipoprotein transport within a multi-layered arterial wall: modelling consistent with experiments

The influence of hypertension on low-density lipoproteins intake into the arterial wall is an important factor for understanding mechanisms of atherosclerosis. It has been experimentally observed that the increased pressure leads to the higher level of the LDL inside the wall. In this paper we attempt to construct a model of the LDL transport which reproduces quantitatively experimental outcome...

متن کامل

Effect of the fluid-structure interactions on low-density lipoprotein transport within a multi-layered arterial wall.

The effects of fluid-structure interactions (FSI) and pulsation on the transport of low-density lipoprotein (LDL) through an arterial wall are analyzed in this work. To this end, a comprehensive multi-layer model for both LDL transport as well as fluid-structure interaction (FSI) is introduced. The constructed model is analyzed and compared with the existing results in the limiting cases. Excel...

متن کامل

Mechanobiology of low-density lipoprotein transport within an arterial wall--impact of hyperthermia and coupling effects.

The effects of hyperthermia, coupling attributes and property variations on Low-density lipoprotein (LDL) transport within a multi-layered wall while accounting for the fluid structure interaction (FSI) is analyzed in this work. To understand the potential impact of the hyperthermia process, thermo-induced attributes are incorporated, accounting for the plasma flow, mass transfer, as well as th...

متن کامل

Autonomous Drug-Encapsulated Nanoparticles: Towards a Novel Non-Invasive Approach to Prevent Atherosclerosis

Introduction This paper proposes the concept of autonomous drug-encapsulated nanoparticle (ADENP) as a novel non-invasive approach to prevent atherosclerosis. ADENP consists of three simple units of sensor, controller (computing), and actuator. The hardware complexity of ADENP is much lower than most of the nanorobots, while the performance is maintained by the synergism in the swarm architectu...

متن کامل

The association between small dense low density lipoprotein,apolipoprotein B, apolipoprotein B/apolipoprotein A1 ratio and coronary artery stenosis

  Abstract   Background: Recently, small dense low density lipoprotein (sdLDL) has been   highlighted as a new risk factor for the coronary artery disease (CAD).Small dense   LDLs are believed to be atherogenic since these particles are taken up more easily by   arterial wall. They are readily oxidized and have reduced affinity for low density   lipoprotein (LDL) receptor and increased affinity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 46 3  شماره 

صفحات  -

تاریخ انتشار 2013